NVIDIA Unveils Mistral-NeMo-Minitron 8B Model with Superior Accuracy

0


Tony Kim
Aug 22, 2024 05:37

NVIDIA’s new Mistral-NeMo-Minitron 8B model demonstrates superior accuracy across nine benchmarks, utilizing advanced pruning and distillation techniques.





NVIDIA, in collaboration with Mistral AI, has announced the release of the Mistral-NeMo-Minitron 8B model, a highly advanced open-access large language model (LLM). According to the NVIDIA Technical Blog, this model surpasses other models of a similar size in terms of accuracy on nine popular benchmarks.

Advanced Model Pruning and Distillation

The Mistral-NeMo-Minitron 8B model was developed by width-pruning the larger Mistral NeMo 12B model, followed by a light retraining process using knowledge distillation. This methodology, originally proposed by NVIDIA in their paper on Compact Language Models via Pruning and Knowledge Distillation, has been validated through multiple successful implementations, including the NVIDIA Minitron 8B and 4B models, as well as the Llama-3.1-Minitron 4B model.

Model pruning involves reducing the size and complexity of a model by either dropping layers (depth pruning) or neurons and attention heads (width pruning). This process is often paired with retraining to recover any lost accuracy. Model distillation, on the other hand, transfers knowledge from a large, complex model (the teacher model) to a smaller, simpler model (the student model), aiming to retain much of the predictive power of the original model while being more efficient.

The combination of pruning and distillation allows for the creation of progressively smaller models from a large pretrained model. This approach significantly reduces the computational cost, as only 100-400 billion tokens are needed for retraining, compared to the much larger datasets required for training from scratch.

Mistral-NeMo-Minitron 8B Performance

The Mistral-NeMo-Minitron 8B model demonstrates leading accuracy on several benchmarks, outperforming other models in its class, including the Llama 3.1 8B and Gemma 7B models. The table below highlights the performance metrics:








 Training tokensWino-Grande 5-shotARC Challenge 25-shotMMLU 5-shotHella Swag 10-shotGSM8K 5-shotTruthfulQA 0-shotXLSum en (20%) 3-shotMBPP 0-shotHuman Eval 0-shot
Llama 3.1 8B15T77.2757.9465.2881.8048.6045.0630.0542.2724.76
Gemma 7B6T786164825045173932
Mistral-NeMo-Minitron 8B380B80.3564.4269.5183.0358.4547.5631.9443.7736.22
Mistral NeMo 12BN/A82.2465.1068.9985.1656.4149.7933.4342.6323.78

Table 1. Accuracy of the Mistral-NeMo-Minitron 8B base model compared to the teacher Mistral-NeMo 12B, Gemma 7B, and Llama-3.1 8B base models. Bold numbers represent the best among the 8B model class

Implementation and Future Work

Following the best practices of structured weight pruning and knowledge distillation, the Mistral-NeMo 12B model was width-pruned to yield the 8B target model. The process involved fine-tuning the unpruned Mistral NeMo 12B model using 127 billion tokens to correct for distribution shifts, followed by width-only pruning and distillation using 380 billion tokens.

The Mistral-NeMo-Minitron 8B model showcases superior performance and efficiency, making it a significant advancement in the field of AI. NVIDIA plans to continue refining the distillation process to produce even smaller and more accurate models. The implementation of this technique will be gradually integrated into the NVIDIA NeMo framework for generative AI.

For further details, visit the NVIDIA Technical Blog.

Image source: Shutterstock


Credit: Source link

Leave A Reply

Your email address will not be published.